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Breeding and Genetics:  
Genomic Selection Methods I

546      Mixed model methods for genomic prediction and estima-
tion of variance components of additive and dominance effects 
using SNP markers. Y. Da* and S. Wang, Department of Animal Sci-
ence, University of Minnesota, St. Paul.

Mixed model methods for joint genomic prediction and estimation of 
variance components for additive and dominance effects using SNP 
markers were developed based on the quantitative genetics model 
that partitions a genotypic value into breeding value and dominance 
deviation. Two sets of formulations were developed for genomic BLUP 
(GBLUP) and genomic REML (GREML) estimation of variance com-
ponents of additive and dominance effects using SNP markers. Set 1 of 
GBLUP and GREML formulations is based on the conditional expec-
tation of breeding values and dominance deviations given phenotypic 
observations with fixed effects estimated by the best linear unbiased 
estimator (CE). The CE set of formulations applies to both cases of ‘q< 
m’ and ‘q>m’ and applies to cases with singular genomic additive and 
dominance correlation matrices, where q = number of individuals and 
m = number of SNP markers. Set 2 of GBLUP and GREML formula-
tions is based on mixed model equations (MME). GREML formulations 
based on MME are computationally more efficient for the case of ‘q>m’ 
and are less efficient for the case of ‘q<m’ than the CE formulations. 
Reliability formulations were derived for GBLUP of breeding values, 
dominance deviations and genetic values as summation of breeding 
values and dominance deviations. GREML is an effective tool to assess 
the exact type of genetic effects and assess the genetic contribution of 
the whole genome or targeted chromosome regions and genes to the 
phenotypic variance. GBLUP of total genetic value that includes addi-
tive and dominance effects provide prediction of an individual’s total 
genetic potential.
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547      GVCBLUP 2.1: A computing package for genomic predic-
tion and estimation of variance components for additive and domi-
nance effects using SNP markers. C. Wang*1, D. Prakapenka2, S. 
Wang1, H. B. Runesha2, and Y. Da1, 1Department of Animal Science, 
University of Minnesota, St. Paul, 2Research Computing, The Univer-
sity of Chicago, Chicago, IL.

GVCBLUP is designed for variance component estimation and 
genomic prediction for additive and dominance effects using SNP 
markers. Computing speed of GVCBLUP 2.1 increased by about 
10 times running on single-core Windows desktops and increased 
by about 50 times running on 2~4 core Windows desktops using 
OPENMP. This new version has 3 programs: GREML_CE, GREML_
QM, and GCORRMX. The GREML_CE and GREML_QM programs 
combined the 24 GREML and GBLUP programs in the previous ver-
sion. GREML_CE is based on the conditional expectation of breeding 
values or dominance deviations given the phenotypic observations 
and applies to full-rank and singular genomic additive and dominance 
relationship matrices, and GREML_QM is based on mixed model 
equations and is designed for q > m, where q = number of individuals 
and m = number of markers. These 2 programs calculate GREML 
estimates of variance components of additive effects, dominance 
effects and random residuals, calculate additive and dominance heri-
tabilities as well as heritability in the broad sense, calculate GBLUP 
of breeding values, dominance deviations and genetic values as sum-

mation of breeding values and dominance deviations for individuals 
in training and validation data sets, and calculate reliability of each 
GBLUP. Option is available to calculate GREML and GBLUP for 
additive effects only or dominance effects only, and for using any 
of the 3 definitions of genomic additive and dominance relationship 
matrices. GCORRMX is for calculating genomic additive and domi-
nance relationships for 3 definitions.
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548      Estimating dominance SNP effects using alternative single-
step type genomic prediction equations. N. Gengler*, ULg-GxABT, 
Gembloux, Belgium.

Recently a new and alternative  derivation of single-step type 
genomic prediction equations allowing joint estimation of GEBV 
and SNP  effects based on the partitioning of genetic (co)vari-
ances was developed. The method was derived from a random 
mixed inheritance model where SNP and residual polygenic effects 
were jointly modeled. The derived equations were modified to allow 
non-genotyped animals and to estimate directly and jointly GEBV 
and SNP effects. Several other advantages of the new equations were 
that weighting of SNP and polygenic effects becomes explicitly and 
that SNP effects were also estimated simultaneously. This method 
makes better use of High-Density SNP panels and can be modified to 
accommodate other type of genetic effects. In the present study modi-
fications of the equations were developed to allow the estimation of 
dominance SNP effects even if not all animals are genotyped and 
parental sub-class effects are used. Previous research done to esti-
mate dominance effects were not very successful, the rationale being 
that they were hindered by the weakness of dominance information. 
However, by estimating dominance SNP effects and subsequently 
dominance GEBV, the estimation and the exploitation of specific 
combining abilities would become finally feasible. Recently, by 
genotyping animals heterozygosity of a given SNP locus is now 
precisely known. Therefore, through the direct use of this informa-
tion with these alternative equations dominance SNP effects can be 
estimated and used to exploit specific combining abilities of given 
combinations of animal genomes. Finally, though this development 
the flexibility of these alternative equations combining advantages of 
single-step and of explicit SNP effect estimation methods to accom-
modate other types of genetic effects is shown.

Key Words: dominance effect, single step, genomic prediction

549      A comparison of hidden Markov-based imputation algo-
rithms when applied to livestock data. K. Dhakal*1, J. M. Hickey4, 
A. Kranis3, M. A. Cleveland2, and C. Maltecca1, 1North Carolina State 
University, Raleigh,  2School of Environmental and Rural Science, 
Armidale, NSW, Australia,  3Aviagen Ltd., Midlothian, United King-
dom, 4Genus plc., Hendersonville, TN.

Several of the pedigree-free imputation algorithms are hidden markov 
model (HMM) based approaches that approximate the coalescent and 
capture linkage disequilibrium information. Some pedigree-free algo-
rithms have found use in livestock, mostly because their performance 
is reasonable, they are easy to use, and because in some instances 
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pedigree information is not present or suitable in livestock data sets 
being imputed. The objective of this study was to compare the per-
formance of HMM imputation algorithms in several typical livestock 
genotyping scenarios with different structures where reference and 
test panels were different sizes. The data set included genotypes for 
pigs, and dairy cattle. Three in-silico low-density panels were con-
structed with densities equivalent to 6,065 (L6k), 3,022 (L3k), and 384 
(L384) SNP across the entire genome. Four popular software packages 
fastPHASE, MaCH (minimac), Impute2, and Beagle were used for 
imputation, and imputation accuracies were evaluated. Differences 
in accuracies were found among imputation algorithms and across 
scenarios, with MaCH (minimac) giving higher accuracy (R-squared 
>0.85) when L6k and L3k panels were used for both pig and cattle 
data sets. Accuracy was higher when larger reference sets and test 
animals in L6k and L3k panels were used. Computational time also 
varied across scenarios with the MaCH (minimac) algorithm overall 
being the fastest. In general, the results obtained are helpful in guid-
ing the selection of imputation algorithms for different imputation 
scenarios and livestock data.
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550      Effect of genotype imputation on genome-based predic-
tion of complex traits: An empirical study with mice data. V. P. S. 
Felipe*1,2, G. J. M. Rosa1, H. Okut3, D. Gianola1, and M. A. Silva2, 
1University of Wisconsin-Madison, Madison,  2Federal University of 
Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,  3University of 
Yuzuncy Yil, Van, Turkey.

High-density molecular marker panels have been used in animal and 
plant breeding for prediction of genetic merit of selection candidates. 
The prediction models often contain thousands of SNPs, which are 
fitted simultaneously using shrinkage-based estimation approaches. 
Quite often, because of cost constrains only a subset of the SNPs are 
genotyped in the selection candidate population, and genotype imputa-
tion methods are applied. The goal of this study was to evaluate the 
effect of genotype imputation on prediction accuracy of phenotypes. 
The hypothesis underlying this work was that all genetic signal and 
information available in a data set is contained entirely on the observed 
genotypes. A publicly available data set on mice was used, with 
information of 1,809 SNPs equally spaced along the genome of 1,881 
animals. The traits considered were body weight and body mass index. 
And, from the full set of SNPs, only 201, 453 or 905 were selected as the 
genotyped SNPs, with the remaining marker imputed using the Beagle 
software. Then, Bayesian Lasso (BL), reproducing kernel Hilbert spaces 
(RKHS) and Bayesian regularized artificial neural networks (BRANN) 
were fitted using the subsets and the full panel of SNPs before and 
after genotype imputation. RKHS method showed the best predictive 
accuracy. Genotype imputation seemed to have the same effect on 
efficiency of BL and RKHS, whereas BRANN resulted in more sen-
sible predictions due to imputation error. In scenarios which genotype 
imputation accuracy was good and masking rates of 75% and 50%, 
the genotype imputation did not bring great benefit. However, when 
genotype information was sparse (90% masking), genotype imputation 
brought information about important markers and improved predictive 
ability. The obtained results show that not always the imputation of 
unknown genotypes is advantageous for phenotypic prediction. The 
gain of imputing genotypes will depend on the connectedness between 
reference population and selection candidates, heritability of the trait, 
number markers available in the original panel, and the method used 
to predict marker effects.
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551      A fast expectation maximization antedependence model for 
whole genome prediction. C. Chen*, H. Wang, W. Yang, and R. J. 
Tempelman, Michigan State University, East Lansing.

As whole genome prediction (WGP) becomes based on even higher 
density single nucleotide polymorphism (SNP) marker panels, compu-
tational efficiency becomes a greater consideration such that inference 
strategies other than Markov chain Monte Carlo (MCMC) might be 
important. Two such popular alternatives are genomic best linear unbi-
ased prediction (GBLUP) and BayesA,B/LASSO like methods based 
on the use of the expectation maximization (EM) algorithm. A primary 
limitation of these models is based on the specification of SNP effects 
being independently distributed, even though one might anticipate size-
able correlation between effects of SNP in close proximity to a major 
causal variant. Our group has previously developed such a model based 
on a first order antedependence covariance structure between adjacent 
SNP, while basing our inference strategy on MCMC. We have demon-
strated that modeling this type of non-stationary correlation improves 
accuracy of breeding value (BV) prediction compared with models 
assuming independent SNP effects. We have developed a computation-
ally tractable EM analog of this antedependence model that we dub 
EM-anteBayesA. In a simulation study involving 30 replicates, each 
involving just over 1000 SNP markers in linkage disequilibrium (LD) 
with average pairwise LD r2 = 0.30, we compared EM-anteBayesA with 
a more conventional EM-based BayesA as well as more conventional 
implementations of anteBayesA and BayesA based on the use of MCMC. 
Although the EM-based methods tended to lead to slightly less accuracy 
in BV prediction than their MCMC counterparts, they were extremely 
competitive computationally thus rendering them to be tractable 
alternatives. Specifically, EM-anteBayesA demonstrated significantly 
higher accuracies than conventional EM-BayesA (P = 0.02). We also 
demonstrate the 4 models/inference strategies on the publicly available 
Wellcome Trust heterogeneous stock mice data. We conclude that EM-
anteBayesA is a promising alternative for improving accuracy of WGP 
compared with other computationally efficient WGP implementations.

Key Words: computational efficiency, genomic selection, expectation 
maximization (EM)

552      Unknown-parent groups and incomplete pedigrees in sin-
gle-step genomic evaluation. I. Misztal*1, Z. Vitezica2, A. Legarra3, 
I. Aguilar4, and A. Swan5, 1University of Georgia, Athens, 2Université 
de Toulouse, Castanet-Tolosan, France,  3INRA, Castanet-Tolosan, 
France,  4INIA, Las Brujas, Uruguay,  5University of New England, 
Armidale, Australia.

In single-step genomic evaluation using best linear unbiased prediction 
(ssGBLUP), genomic predictions are calculated with a relationship 
matrix that combines pedigree and genomic information. For missing 
pedigrees, unknown selection processes, or inclusion of several popula-
tions, a BLUP model can include unknown-parent groups (UPG) in the 
animal effect. For ssGBLUP, UPG equations also involve contributions 
from genomic relationships. When those contributions are ignored, UPG 
solutions and genetic predictions can be biased. Several options exist 
to eliminate or reduce such biases. First, mixed model equations can 
be modified to include contributions to UPG elements from genomic 
relationships (greater software complexity). Second, UPG can be 
implemented as separate effects (higher cost of computing and data 
processing). Third, contributions can be ignored when they are relatively 
small but they may be small only after refinements to UPG definitions. 
Fourth, contributions may approximately cancel out when genomic 
and pedigree relationships are constructed for compatibility; however, 
different construction steps are required for unknown parents from the 
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same or different populations. Finally, an additional polygenic effect 
that also includes UPG can be added to the model (slower convergence 
rate). Chosen options need to reflect different origins of UPGs: missing 
pedigrees in a closely selected population, multiple breeds, external lines 
or combinations of origins. Incomplete pedigrees may also cause biases 
and convergence problems even when UPGs are not in the model. In 
such cases, choices include restoration or truncation of pedigrees. Sever-
ity of problems with UPG and incomplete pedigrees greatly depends 
on the population structure. The problems are small in large purebred 
populations that include many high-accuracy sires (e.g., in dairy). The 
problems are larger in multi-line/multi-breed populations especially 
with few high-accuracy animals (e.g., in sheep).
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553      Efficient inversion of a large genomic relationship matrix 
stored on a disk using a multi-core processor and graphic process-
ing units. Y. Masuda* and M. Suzuki, Obihiro University of Agricul-
ture and Veterinary Medicine, Obihiro, Japan.

The objective of this study was to develop new software for quick 
computation of the inverse of a large genomic relationship matrix stored 
on a disk by a hybrid system with graphic processing units (GPUs) and 
multi-core central processing unit (CPU). The matrix was split into 
submatrices called “panels,” whose elements were stored on a solid 
state drive (SSD). The process of inversion was described as a set of 

multiplications and additions between panels. The panels were loaded 
into main memory and updated if required. The updated elements were 
immediately written back to the disk. The optimized BLAS libraries, 
OpenBLAS and CUDA BLAS, were employed for matrix operations. 
Some computations on GPUs and accesses with the file were parallelized 
by OpenMP. Our software was written in Fortran 2003 and compiled 
with GFortran 4.7.2. The program were benchmarked on a computer 
with Intel Core i7–3770 (quad-core 3.4GHz), 32GB main memory, and 
NVIDIA GeForce GTX 580 with 1.5GB RAM, running Linux (x86_64). 
When the matrix had 50,000 of the order and it stored on the disk, the 
computing time for the inversion was 5.6 min in single precision and 15.0 
min in double precision arithmetic. When enough memory was avail-
able on GPUs, the computing time was reduced by approximately 30% 
in single precision and 10% in double precision arithmetic. Although, 
the matrix was stored on the disk, our implementation completed the 
inversion 1.8 times (single precision) or 1.3 times (double precision) 
faster than a system where all data were loaded into main memory and 
processed by the optimized LAPACK subroutine (DPOTRF/DPOTRI) 
with a multi-core CPU only. The inversion for a matrix of 110,000 order 
in single precision (or 80,000 in double precision) was completed within 
1 h. This technique is especially useful when the number of genotypes 
is up to 200,000 because the inverse of genomic relationship matrix can 
be directly obtained and used for the calculation of genomic predictions 
and their reliabilities without modifications to existing software.
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