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1290 Reactive N emissions from crops and pastures.  
C. Wagner-Riddle* and K. Congreves, 
University of Guelph, Guelph, ON, Canada

1291 Measurement and mitigation of reactive nitrogen 
species from swine and poultry production 
facilities. W. Powers* and M. Capelari, Michigan 
State University, East Lansing.

Reactive nitrogen (Nr) species include oxides of nitrogen (ni-
tric oxide, nitrogen dioxide and nitrous oxide [N

2
O]), anions 

(nitrate and nitrite) and amine derivatives (ammonia [NH
3
], 

ammonium salts and urea). Of the different Nr species, air 
emissions from swine and poultry facilities are dominantly 
NH

3
 followed by N

2
O. Excreta emissions are NH

3
, ammonium 

ions, and urea with trace amounts of nitrate and nitrite. Farm 
systems and practices that handle manure as a wet product 
without pH modification favor almost exclusive NH

3
 produc-

tion while systems and practices associated with dry manure 
handling and bedded systems emit more NH

3
 and result in 

greater N
2
O production than that produced in wet systems. 

Results from a turkey grow-out study estimated that just under 
1% of consumed nitrogen was emitted as N

2
O from housing, 

compared to just under 11% emitted as NH
3
. Despite generally 

lower N
2
O emissions from animal housing compared to crop 

field emissions, N
2
O emissions from housing are greater than 

often estimated. Lagoon systems emit more N
2
O than either 

slurry or deep pit swine systems. Deep pit swine buildings 
emit as much as two-thirds less N

2
O than deep bedded swine 

systems and laying hen, broiler chicken and turkey buildings 
emit over 4 times as much N

2
O as swine housing, on an an-

imal unit basis. Critical control points for mitigation center 
on 1) reducing the amount of nitrogen excreted and there-
fore excreted nitrogen available for loss to air or water dur-
ing housing, manure storage or following land application of 
manures, 2) capturing excreted nitrogen to prevent release of 
nitrogen-containing compounds to air, water or soil resources 
or 3) conversion/treatment of nitrogen-containing compounds 
to non-reactive nitrogen gas.
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Nitrogen is an essential building block of all proteins and thus 
an essential nutrient for all life. Reactive nitrogen, which is 
naturally produced via enzymatic reactions, forest fires and 

lightning, is continually recycled and cascades through air, 
water, and soil media. Human activity has perturbed this cycle 
through the combustion of fossil fuels and synthesis of fer-
tilizers. The anthropogenic contribution to this cycle is now 
larger than natural sources in the United States and globally. 
Until recently, little progress has been made in modeling of 
the nitrogen cycle in the environment due to the complexity 
of and uncertainty in its transport and transformation between 
soil, water and atmospheric media. The lack of understanding 
of these multimedia transport processes is due to the typical 
focus of research on specific media and the difficulty in pa-
rameterizing the human dimension of anthropogenically fixed 
reduced nitrogen and input into the environment, primarily 
through mineral fertilizer application to crops, the largest 
source of environmental reactive nitrogen. Here we will focus 
on modeling of the atmospheric component of the nitrogen 
cascade, with an emphasis on ammonia, emerging measure-
ment techniques, and the potential for model improvements 
using emerging measurements, existing networks and mod-
eling. The USEPA’s Community Mulitscale Air Quality 
(CMAQ) model will be evaluated against observational trends 
in nitrogen deposition and ambient air quality from 2002 to 
2012 and the sensitivity of CMAQ to NH

3
 emissions will be 

explored� These findings will be presented with an emphasis 
on how the sensitivity of the modeling system to animal hus-
bandry emissions and how the representation of these emis-
sions can be improved.
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BIG DATA IN ANIMAL SCIENCE:  
USES FOR MODELS, STATISTICS  

AND META-APPROACHES

1293 Modeling in animal science: an introduction  
to quantitative understanding and prediction. 
J. Dijkstra*, Animal Nutrition Group, Wageningen 
University, Wageningen, Netherlands.

In animal science, continuous advances in technology, com-
puting, and engineering result in the generation of data at a 
rapidly increasing rate. Mathematical models enable quanti-
tative analysis and integration of data to study the behavior 
and complexity of biological systems. This review highlights 
several aspects of modeling in the context of understanding, 
predicting and modifying complex processes in farm animal 
systems, and offers a current perspective for animal scientists 
without requiring specialized knowledge of mathematics or 
bioinformatics. A mathematical model is an equation or set 
of equations which represents the behavior of a system, and 
can be viewed as an idea, hypothesis or relation expressed in 
mathematics. In animal science, the system may range from 
the molecules in cells up to herd or flock level, with any level 
of the system being composed of subsystems lying at a lower 
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level, or being a subsystem of higher level systems itself. 
In empirical models, experimental data are used directly to 
quantify relationships based at a single level. Alternatively, 
mechanistic models are process-based and seek to understand 
causation in the system of interest by describing a system 
level in terms of components and associated processes at sub-
system levels. Furthermore, models may be static, capturing 
behavior of the system at a particular point in time, or dy-
namic, describing how quantities in the system change with 
time� Several key benefits have been attributed to modeling� 
First, models can provide an integrative, quantitative under-
standing of mechanisms and associated relationships between 
responses of a system at various levels. Second, building a 
model may pinpoint areas where data or knowledge are lack-
ing, and may indicate priorities for further research and de-
velopment. Third, models provide quantitative assessments 
of management practices for the animal production sector 
including policymakers. This aspect becomes particularly 
important when observations are hardly possible because of 
time scale (changes emerging after several years or decades 
only) or technical difficulty of measurements� Two areas are 
in need of further development. Emerging–omics data on ge-
netic and metabolic regulatory networks at the molecular and 
cellular level require further modeling methodology efforts to 
integrate such data with processes at a higher system level. 
Second, further advances in understanding and prediction at 
integrated levels will be obtained on combination of models 
that differ in underlying methodology. Examples include the 
integration of mechanistic models of animal metabolism with 
linear programming and life cycle assessment models.
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R. R. White2, C. F. Nicholson3, B. L. Turner4, 
M. A. Fonseca1, and M. D. Hanigan2, 1Texas 
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An important challenge in agriculture modeling is deciding 
how to mathematically represent biological phenomena. The 
objective of this paper is to compare more traditional model 
development methods (e.g., empirical models) with struc-
ture-based modeling (SBM) such as system dynamics (SD). 
Substantial overlap exists between traditional and SBM ap-
proaches, but there are important differences. The overall 
steps of the modeling process and scientific rigor are quite 
similar, but their focus and implementation can differ substan-
tially. The steps of both modeling approaches often comprise 
the �) identification of a problem (research obMective), �) for-
mulation of the mathematical (and/or statistical) statements, 
3) data collection (experimentation), 4) model evaluation 

and quantitative analysis relevant to the modeling objectives. 
SBM often differs from traditional approaches in each of 
these phases such as defining the problem as the replication of 
observed dynamic behavioral modes (e.g., s-shaped growth or 
oscillations) rather than situational point prediction or statisti-
cal estimation of parameters (step 1), giving more attention to 
system structure based on cause-effect relationships in terms 
of the stock-flow (i�e�, level variables and rate variables) and 
feedback processes that generate observed behavior and visu-
alizing these relationships in causal loop diagrams (CLD) and 
stock and flow diagrams (SFD) (step �), and data collection 
that encompasses a broader range of sources (experimental, 
secondary, expert opinion, participatory exercises) and may 
include concepts hypothesized to be important but for which 
limited data are available (step 3). Model evaluation criteria 
can also differ due to the intrinsic nature of SBM as greater 
focuses are given to behavioral mode replication and feed-
back loop dominance analysis (step 4). In general, traditional 
modeling approaches focus on defining analytical functions 
and their statistical consistency with observed biological re-
sponses, whereas SBM focus on the mechanistic explanations 
for system behaviors and the feedback relationships that led 
to them. For example, a traditional modeling approach could 
use a saturating function to describe movement of a substrate 
across a membrane, whereas SBM would focus on feedback 
processes that represent decreasing affinity of the membrane 
for that substrate as concentration increases. Although they 
can differ substantially in their implementation, these 2 math-
ematical modeling strategies should be viewed as comple-
mentary rather than competing tools.
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1295 Big data analysis techniques. N. St-Pierre*,  
Ohio State University, Columbus.

The term ‘big data’ has recently entered our lexicon. Data 
scientists and statisticians have loosely defined big data as 
datasets with billions (109) of rows (tupples) of data. Hence, 
very few datasets in the animal sciences would qualify as true 
big data. At best, we deal with large datasets in the millions 
of tupples. Regardless, some of the same issues surrounding 
big data analyses are shared with large data: 1) near certainty 
of the presence of outliers, and 2) low signal to noise (irrel-
evant variables, subtle relationships, data imbalance, near 
collinearity). In large datasets, outliers are more than unidi-
mensional: higher dimensions must be scrutinized. An exam-
ple of this involved the characterization of feed composition 
data. Techniques used to address the low signal to noise issue 
can be classified into � groups: opaque techniques and black 
box techniques� The most prevalent techniques in the first 
group are: visualization through smoothing, regression, prin-
cipal component analysis (PCA), decision trees, clustering 
methods, and multivariate adaptive splines (MARS). Black 
box techniques include neural networks, k-nearest neighbor 
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(KNN), K-mean, support vector machines and genetic algo-
rithm� Each technique will be briefly explained using an ex-
ample� With PCA, we first find a direction that has maximum 
variance. A second direction is then found, which has maxi-
mum variance of all directions perpendicular to the first� The 
process is repeated until there are as many directions (vectors) 
as original variables. Advantages of PCA are the dimension 
reduction and the ability to handle more predictors than obser-
vations. Disadvantages are that they often lack interpretation, 
and are linear models. Issues when only summary statistics 
are available (i.e., meta-analysis) will be explained, includ-
ing the importance of properly weighing observations and ac-
counting for the inherent blocking in the meta-design.

Key Words: big data, principal component analysis, 
meta-analysis

1296 Evaluation of multilevel mixed effect models.  
E. Kebreab*, University of California, Davis, Davis.

Simple mixed effect models have been extensively used in an-
imal science literature. However, in some instances biological 
relationships require that models account for deviations of indi-
vidual animals from that of the population. Furthermore, some 
animals might share similar genetic background because they 
are closely related (e�g�, pig littermates) thus specification of 
animal within litter relationship (i.e., nested random effects) 
is necessary to model the hierarchical data structure. In some 
cases measurements taken on the same individual may not be 
independent (e.g., weekly BW measurements). This will result 
in models with heteroskedastic and serial correlated errors, 
which need to be evaluated and the errors minimized. Recent 
developments in statistical theory and computational power 
allow for specification of multilevel mixed effect models, es-
pecially nonlinear models. To demonstrate implementation of 
such models, an example is provided using data collected from 
an experiment with 40 pigs of 3 sexes originating from 17 lit-
ters and their BW measured weekly or every 2 wk up to 1,007 
d. A multilevel mixed effects model was used within a growth 
function because it allows for estimation of all growth profiles 
simultaneously, and different sources of variation. Furthermore, 
variance in-homogeneity and within-animal correlation were 
introduced to the growth function. In the basic model, the vari-
ance was assumed to equal to identity matrix, i.e., the within-
animal errors are independent, identical and random vectors. 
The basic model fit suggested that the within-animal variability 
increased with increasing BW and auto-correlation was also 
present. The variance-covariance matrix was then relaxed and 
decomposed into variance structure component and a correla-
tion structure component that allows specification of model 
variance heterogeneity and serial correlation. Variance of the 
within-animal errors was modeled using a variance function, 
which when implemented reduced Bayesian Information Crite-
ria (BIC) values to 8,950 compared to 9,861 for the basic model 
but did not remove the strong auto-correlation in the residuals. 

A continuous time autoregressive process of first order was 
applied to the within-animal errors because it deals with un-
equally spaced observations. This further reduced BIC to 7,146 
due to removal of the serial correlated errors and thus inclusion 
of a continuous auto regressive process of first order is recom-
mended when modeling frequently sampled growth data.

Key Words: multilevel mixed effect model, variance 
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The objective of this study was to evaluate the effects of lac-
tose inclusion in calf starters on ruminal pH and VFA profile� 
Sixty Holstein bull calves were raised on an intensified nurs-
ing program using milk replacer containing 28% CP and 15% 
fat, until 56 d of age. Calves were fed texturized calf starters 
containing lactose at 0% (Control), 5.0% (LAC5), or 10.0% 
(LAC10; n = 20 for each treatment) on a DM basis. All calf 
starters were formulated for 23.1% CP. All calves were fed 
treatment calf starters ad libitum from d 7 and their hay (Klein 
grass) intake was limited to 150 g/d (as fed). Ruminal pH was 
measured every 2 min using small ruminant rumen pH loggers 
(Dascor, CA) immediately after weaning (d 55 to 62) for 15 
calves (5 calves per treatment), and 3 wk after weaning (d 77 
to 80) for the other 45 calves (15 calves per treatment). Daily 
mean, minimum, maximum ruminal pH, and duration and area 
under rumen pH 5.8 were not affected by treatment for both 
periods (d 55 to 62 and d 77 to 80). However, Spearman’s cor-
relation coefficient (r

s
) was 0.306 (P < 0.05) between lactose 

intake and minimum ruminal pH for d 77 to 80, indicating that 
actual lactose consumption may affect ruminal pH. In addition, 
hay intake was not affected by treatment, but it was positively 
correlated with daily mean (r

s
 = 0.338, P < 0.05) and maximum 

ruminal pH (r
s
 = 0.408, P < 0.01), and the variation in hay 

intake might have masked treatment effects on ruminal pH. 
Ruminal molar ratio of acetate (mean ± SE) was 40.6 ± 1.26 
(Control), 42.8 ± 1.26 (LAC5), and 45.3 ± 1.26% (LAC10), 
molar ratio of propionate was 40.2 ± 0.98 (Control), 38.1 ± 
0.98 (LAC5), 35.3 ± 0.98% (LAC10), and acetate/propionate 
ratio was 1.01 ± 0.06 (Control), 1.15 ± 0.06 (LAC5), 1.29 ± 
����� (LAC��) on d ��, and the differences were significant 




