Program findhap.f90 are several percent higher than with version 1.

Types were correct from HD, 98.0% from 50K, 88.4% from 3K, and missing initially. After imputation of missing markers, 99.9% of genotyping structure with 1% of genotypes missing and 0.02% incorrect was achieved using an example simulated chromosome for this same population.

Other females. Percentages of correctly imputed genotypes were estimated using 180 influential sires, 138 Beltsville research cows, and 24 chip. Observed data included 342 animals with HD genotypes, 54,676 animals with 4,813,726 cows from 2004 data. Coefficients of determination (R²), and regressions (δ) of 2004 GBV on 2009 daughter deviations were calculated, as statistics of accuracy and bias, respectively, for 1307 young bulls. Parent averages (PA) were also calculated for 2004 data with no genomic information. With MT (ST) models, average R² (%) were 20.5 (18.6) and 37.9 (34.6), 37.3 (34.1), 35.9 (34.2) and 37.7 (34.5), and average δ (× 100) were 76.7 (77.3) and 79.8 (79.4), 76.3 (75.0), 74.7 (73.8) and 76.7 (76.2), for PA and for GBV with GE, GB, GC, and GCS, respectively. When the weight for the inverse of the numerator relationship matrix for genotyped animals was reduced to 0.7, R² remained almost identical while the average δ increased to 92.7 with GE, 90.7 with GB, 89.2 with GC, and 91.9 with GCS for MT models. The ST models required a stricter convergence criterion of 10⁻¹⁴ than that of 10⁻¹¹ for MT models to achieve the same accuracy. The GBV obtained from MT models are more accurate than those from ST models. Modifying the weight for pedigree relationships of genotyped animals reduces bias in GBV. Multiple trait large-scale genomic evaluation is computationally feasible.

Key words: genomic evaluation, linear type trait, US Holstein.

Genomic imputation and evaluation using 342 high-density Holstein genotypes. P. M. VanRaden1, D. J. Null*,1, G. R. Wiggans1, T. S. Sonstegard2, and E. E. Connor1, 1Animal Improvement Programs Laboratory, ARS, USDA, Beltsville, MD, 2Bovine Functional Genomics Laboratory, ARS, USDA, Beltsville, MD.

Genomic evaluations for 73,749 Holsteins were computed using 636,967 of the 777,000 markers on the Illumina high density (HD) chip. Observed data included 342 animals with HD genotypes, 54,676 animals with 42,503 marker (50K) genotypes, 17,371 animals with 2,614 marker (3K) genotypes, and 1,360 nongenotyped dams (0K) genotypes from 180 influential sires, 138 Beltsville research cows, and 24 other females. Percentages of correctly imputed genotypes were estimated using an example simulated chromosome for this same population structure with 1% of genotypes missing and 0.02% incorrect initially from each chip. Over all animals, 94.4% of genotypes were missing initially. After imputation of missing markers, 99.9% of genotypes were correct from HD, 98.0% from 50K, 88.4% from 3K, and 93.8% from 0K genotypes. These imputation rates with version 2 of program findhap.f90 are several percent higher than with version 1. Version 2 begins with long segments to improve haplotype matches for close relatives and ends with short segments to detect matches from more remote ancestors instead of choosing just one optimal segment length. Evaluations were tested using imputation of actual genotypes and August 2007 phenotypes to predict deregressed evaluations of bulls proven after August 2007. For 29 traits tested, estimated genomic reliability averaged 54.3% using 636,967 markers vs. 54.8% using 42,503 regressions vs. 29.9% from traditional parent average. Squared correlations with future data were higher for 10 traits and lower for 19 with HD than with 50K evaluations. The largest marker effects were located at very similar positions, but new markers from the HD chip often had larger effects than the best markers from the 50K chip. Results were less favorable than the 1.6% increase in reliability expected from simulation, but more animals with HD genotypes will improve imputation and reliability. Also, multi-breed evaluation could produce larger gains than the single-breed evaluation investigated here.

Key words: genomic evaluation, imputation, marker density.

Lower density chips provide an affordable alternative to evaluate animals and characterize traits. The objective of this research was to evaluate 620 bulls, steers, and heifers ranging from 100% Angus to 100% Brahman (B) using phenotypes from four postweaning feed efficiency and growth traits, pedigree, and SNP genotypes from 2900 loci (Illumina 3k chip). Traits were residual feed intake (RFI), daily feed intake (DFI), feed conversion ratio (FCR), and weight gain (WG). Data was collected in a GrowSafe automated feeding facility from 2006 to 2010. Calves remained in pens for the 21-d pre-trial and 70-d trial periods. Animals were assigned to pens by sire group and sex. Concentrate consisted of cottonseed hulls, corn, molasses, and a protein, vitamin, and mineral supplement. Calves were evaluated using a polygenic-genoomic mixed model. Fixed effects were contemporary group (year-pen), age of dam, sex of calf, age of calf, B fraction of calf, and heterozygosity of calf. Random effects were animal polygenic (AP; mean zero; variance = A*Vg; A = additive relationship matrix, Vg = additive genetic variance), additive SNP (AS; mean zero; variance = AS*Vg), and residual effects (mean zero, common variability). Random effects were estimated using option VCE (Markov Chain Monte Carlo) of program GS3. Heritabilities were 0.18 for RFI, 0.30 for DFI, 0.16 for FCR, and 0.33 for PWG. The fraction of the additive genetic variance explained by the 2900 markers of the Illumina3k chip was 15% for RFI, 11% for DFI, 37% for FCR, and 20% for PWG. The AS, AP, and TA EBV for all traits tended to decrease as B fraction increased, suggesting that high percent B calves were genetically more efficient (lower RFI), but had lower WG.

Key words: feed efficiency, genomic, multibreed.

A neural network approach for association between a low-density whole genome SNP marker panel for 19 traits in beef
The predictive ability of a low-density SNP panel derived from the Illumina Bovine SNP50 and developed for marbling, back fat, carcass weight, rib eye area, yearling weight, and heifer pregnancy rate was evaluated for 19 traits (residual feed, intake, dry matter intake, birth weight, weaning weight, docility, milk yield, average daily gain, yearling weight, carcass weight, marbling scores, rib eye area, back fat, mature weight and height, scrotal circumference, calving ease direct, calving ease maternal, heifer pregnancy). Data consisted of the genotypes of 2,245 Angus animals and their corresponding EPDs with missing rate (on phenotypes) ranging from 0 to 54% (heifer pregnancy). Missing genotypes were replaced with the most likely genotype. Linear regression (LR) and Neural Network (NN) approaches were implemented and compared. For LR, a cross validation procedure was adopted where the data was randomly divided into 5 groups with equal size. In each one of the 5 replicates, 80% of the data was used for training and the remaining 20% for validation. For the NN approach, randomly 2/3 and 1/3 of the data were used for training and validation, respectively. The process was replicated 5 times. A NN is an artificial system of massively interconnected neurons. The network architectures and the learning algorithm define the manner in which the neurons are related and structured. In this study, a feed-forward NN with one hidden layer was used. The parameters of the NN such as the number of neurons in the hidden layer, and learning rate were set heuristically. For both approaches, the lowest correlation between true and estimated breeding values was for docility (0.52) and scrotal circumference (0.57). The highest accuracy was for yearling weight (0.82 for LR and 0.83 for NN). Across the 19 traits, the differences in performance between LR and NN range from 2 to 5% with superiority for the NN approach, except for weaning weight where the LR was slightly superior (0.27%), the superiority of the NN approach could be due to its ability to intrinsically accommodate the non-linear relationship between variables.

Key words: SNP, whole genome, beef cattle

Whole genome association analyses for ultrasound and carcass merit traits in beef cattle. H. Li*, Z. Wang, P. Stothard, and S. S. Moore, University of Alberta, Edmonton, Alberta, Canada.

Carcass merit traits in beef cattle are of high interest in the beef industry and are quantitative in nature. The goal of this study was to identify genetic markers and potential candidate genes associated with meat quality traits in beef cattle. A genome-wide association study (GWAS) for 40,809 single-nucleotide polymorphism (SNP) markers using Bayesian methods was conducted in a total of 922 steers. Five carcass merit traits including carcass weight (CWT), carcass average backfat (CABF), carcass rib eye area (CREA), carcass grade fat (CGF), carcass lean meat yield (CLMY) and 3 ultrasound measurement traits including ultrasound marbling (UMB), ultrasound backfat (UBF) and ultrasound ribeye area (UREA) were analyzed. The proportion of phenotypic variance explained by markers was 0.50 for CWT, 0.25 for CABF, 0.37 for CREA, 0.27 for CGF, 0.24 for CLMY, 0.39 for UBF, 0.63 for UMAR and 0.37 for UREA. SNPs with large substitution effects indicated that major genes exist for meat quality traits in beef cattle. For instance, the largest SNP on BTA6 explained 6.67% of the phenotypic variance for CWT. Many of the large effect SNPs coincided with previously identified QTL. Potential candidate genes (e.g., 49 for CWT) were identified within 1 Mbp windows flanking the top 10 SNP markers. Potential functional genes (e.g., NCAPG, MED28 on BTA6 and LYN on BTA14 for CWT) were selected from these positional genes based on predicted and known functional information associated with the genes or their orthologs. Overall, this GWAS provides a list of markers and potential functional candidate genes associated with beef carcass merit traits that could be used to improve beef production and quality via marker-assisted selection.

Key words: beef cattle, genome-wide association study, carcass merit

Large-scale SNP association analyses for somatic cell score in Canadian Holstein cattle. H. Li*, Z. Wang, F. S. Schenkel, M. Sargolzaei, S. S. Moore, and P. Stothard, University of Alberta, Edmonton, Alberta, Canada, University of Guelph, Guelph, Ontario, Canada, I. Alliance Boviteq, Saint-Hyacinthe, Québec, Canada.

Genetic studies in dairy cattle have found that selection for higher milk production brings with it slightly higher rates of mastitis. Mastitis is the most common and most costly disease of dairy cattle and there are no affordable or prevailing methods for directly measuring mastitis. Somatic cell score (SCS) is an excellent indirect trait for selection for mastitis as the genetic correlation between SCS and mastitis is 60% to 80%. The goal of this study was to identify genetic markers and potential candidate genes associated with SCS in dairy cattle. A genome-wide association study for 29,552 single-nucleotide polymorphism (SNP) markers was conducted in a total of 647 Canadian Holstein bulls. The analyses used a combination of Bayesian models to predict individual SNP effects. The proportion of the variance of the bulls' de-regressed SCS EBVs explained by markers was 0.76. SNPs with large substitution effects indicated that major genes exist for SCS. The 10 SNPs with largest effects were on BTA6, 14, 21, 18, and 19. Many of the large-effect SNPs coincided with previously identified QTL. One hundred and 32 positional candidate genes were identified within 2 Mbp genomic regions flanking the top 10 SNPs. Potential functional genes (e.g., GC and NPFFR2 on BTA6, LY6D on BTA14, MFGE8 and AP3S2 on BTA21, and FOXL1, CYLD and NOD2 on BTA18) were selected from these positional genes based on predicted and known functional information associated with the genes or their orthologs. Functional annotation revealed that these genes are involved in the regulation of immune system activity and inflammation. For instance, the CYLD gene on BTA18 is a crucial negative regulator of inflammation and subsequent immune response in antibacterial defense. This finding reinforces the role of the genetic control on immune response to bacterial infections. The list of SNPs and potential functional candidate genes may prove useful for prevention of mastitis via marker-assisted selection.

Key words: Holstein cattle, genome-wide association study, somatic cell score

Comparison of selective genotyping strategies for prediction of breeding values in a population undergoing selection. A. A. Boligon*, N. Long, G. L. Albuquerque, K. A. Weigel, D. Gianola, and G. J. M. Rosa, Department of Animal Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil, Department of Animal Sciences, University of Wisconsin, Madison, Department of Dairy Science, University of Wisconsin, Madison.

A simulation study was used to evaluate the predictive ability of genomic selection under different strategies of selective genotyping. The genome consisted of 10 chromosomes, each with 202 markers and 100 QTLs evenly spread across 100 cM. After 5,000 generations of random mating with an effective population size of 100 (50 males
and 50 females), a reference population (G0) was generated by a full factorial mating between the 50 males and 50 females. In G0 animals were selected based on their phenotypes (highest phenotypic values) or at random, at different selection intensities, to produce generation G1. Five genotyping strategies were considered to choose 500 animals in G0 as a training set: random sampling (R); highest phenotypic values (H); lowest phenotypic values (L); extreme (low and high) phenotypic values (E); and subset of less related animals (I). The number of individuals in G0 and G1 was fixed at 2,500, and heritability was set to 0.10, 0.25 and 0.50. Additionally, all 5 genotyping strategies were applied also to an indicator trait with a genetic correlation of 0.5 with the target trait. The selective genotyping strategies were compared in terms of their ability of predicting the genetic values of the animals in G1, using a Bayesian Lasso model with all 2020 markers simultaneously. For all simulated traits, the lowest correlation between predicted and true breeding values (GEBV and TBV, respectively) was obtained when using the L genotyping strategy. For E, R, and I strategies, the correlation between GEBV and TBV became slightly higher as selection intensity decreased, and was largest when no selection occurred. These 3 strategies were better than H. In addition, the E, R, and I approaches had lower prediction mean squared errors (PMSE), followed by H and then by L. Overall, genotyping strategy E led to the best predictive ability of breeding values, indicating that animals with extreme phenotypic values in a reference population are the most informative when training genomic selection models.

Key words: Bayesian Lasso, molecular markers, predictive ability

W60 Accounting for new mutations in the genomic relationship matrix.
In this abstract, procedures for calculating the genomic relationship matrix are adapted to accommodate the occurrence of new mutations in the autosomal genome, i.e., the mutational genomic relationship (Gm) matrix. These algorithms derived from the original development by N. R. Wray for the additive numerator relationship matrix and accommodated genomic data from massive genotyping technologies. Assume as starting point g non-overlapping generations with n individuals per generation, all of them being genotyped for m single nucleotide polymorphism (SNP) markers spread across the whole autosomal genome. Moreover, assume pk(l) as the allelic frequency of the kth SNP in the lth generation and πg(l) = 2pga(l)-0.5 as a correcting factor to set mean values of allele effects to 0; the genotype of the i th individual at the s th SNP (prs) was assumed as −1, 0 or 1 (i.e., homozygote, heterozygote and other homozygote, respectively). The general structure of the Gm matrix can be defined as Gm = G1 + G2 + ... + Gg, Gg being a genomic relationship matrix where individuals from generation g were treated as founders and the rows and columns linked to ancestors from previous generations were fixed to 0. To avoid the successive computation of all intermediate Gg matrices, the final mutational genomic relationship between individuals i and j (gij; i being older than j) reduced to the following expression ρgij = ∑p∑q=0,1...m∑ρ∑σ=0,1...m[(πgρ)(πgσ)][2∑ρ+σ=q=0(1-Pρq)]/(∑p∑q=0,1...m(1-Pρq)), where g* was the generation of origin of individual i. This matrix could be straightforwardly implemented within the structure of the genomic BLUP model in order to account for the genetic variability originated from young mutations.

Key words: genomic relationship, matrix, mutation