

The Gastrointestinal Microbiome and Probiotics : Effects on Intestinal Physiology and Mucosal Inflammation

James Versalovic, M.D., Ph.D. Professor Department of Pathology & Immunology Baylor College of Medicine

Head, Department of Pathology Chief, Pathology Service Texas Children's Hospital Houston TX USA

PROBIOTICS (1907) Feeding Microbes to Humans

Ilya Ilyich Mechnikov

ANTIBIOTICS (1928) Killing Microbes in Humans

Alexander Fleming

What are Probiotics?

"Probiotics are live micro-organisms which when administered in adequate amounts confer health benefit on the host" (FAO, 2001)

- Probiotics should be alive in the gastrointestinal tract.

- Mechanisms of probiosis should be clearly defined before making a health claim.

- The effect of one probiotic strain cannot be extrapolated to another strain from the same species.

Delphine MA Saulnier^{1,4}, Jennifer K Spinler^{1,4}, Glenn R Gibson³ and James Versalovic^{1,2,4}

Context : The Human Microbiome

The Human Microbiome Project: Indigenous Microbiota and Microbiome

(P Eckburg et al. *Science* 2005;308:1635-38)

>60% novel bacteria>80% nonculturable bacteria

Mixed Microbial Communities

Human Colon > 1000 species *Firmicutes Bacteroidetes*

Firmicutes include Lactobacillus spp.

(PJ Turnbaugh et al. Nature 2007;449:804-10)

(S Macfarlane et al. *Appl Environ Microbiol* 2005;71:7483-92)

The Distal Gut Microbiomes of Healthy Children Differ from Healthy Adults

11 samples from healthy adults(18-40 yo) sequencedby HGSC at Baylor.

29 samples from healthy children (7-12 yo) sequenced by HGSC at Baylor

454 16S metagenomic sequencing

14-16K reads per sample

V1V3 regions only (1 replicate/sample)

454 sequencing reveals strainspecific changes and increased microbial diversity after probiotics

Indigenous *Lactobacillus* of the Human Gastrointestinal Tract

- Lactobacillus gasseri
- Lactobacillus reuteri
- Lactobacillus ruminis
- Lactobacillus salivarius*

- Autochthonous (Indigenous) versus Allochthonous (Transient) Microbiota
- Commensal-derived Probiotics
 - Derived from the autochthonous microbiota

Can we use indigenous microbes or probiotics to replenish missing elements or functions?

Replenish or increase microbial diversity in intestine. Increased diversity is beneficial.

Intestinal Physiology, Development and Maturation

- Probiotics may stimulate intestinal epithelial cell maturation and migration
- Probiotics may promote villus development
 Increased absorptive surface area
- Probiotics may stimulate goblet cells and mucin production
- Probiotics may reduce intestinal permeability and promote tight junctions
- Probiotics enhance expression of anion exchangers (choride) on surfaces of IECs

Commensal Microbes and Mechanisms of Immunomodulation

- Stimulate proliferation of regulatory T cell or APC populations
- Stimulate expression of anti-inflammatory cytokines or factors in coordination with TLR ligation
- Suppress pro-inflammatory cytokine secretion by innate immune system

Chandra lyer

Can commensal-derived probiotics block immune signaling in TNF-stimulated myeloid cells?

L. reuteri can Inhibit TNF Dependent NF-kB Activation

Nucleus: activate transcription of inflammatory and anti-apoptotic proteins

Chandra lyer, Ph.D.

Pathways Affected by Probiotic L. reuteri

Carissa Thomas

Can probiotics regulate specific immune signaling pathways?

ATCC PTA 6475 Inhibits TNF via Downregulation of TAB1

IL-1 Receptor Antagonist (IL1RN)

 Mitogen-activated protein kinase kinase kinase 7 interacting protein 1 (TAB1/MAP3K7IP1)

 Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase β (IKKB/IKBKB)

Tumor necrosis factor (TNF)

Mechanisms of Immune Enhancement

- Probiotics stimulate Th1 immune responses
 Interferon-gamma
- Intestinal bacteria may stimulate Th17
 differentiation in the gut mucosa
- Probiotics enhance mucosal IgA and systemic IgA production
- Probiotics-derived CpG –containing DNA activate immune signaling pathways
- Probiotics stimulate epithelial cell proliferation and signaling pathways resulting in cytokine/chemokine production

Geoff Preidis

Can probiotics reduce diarrheal disease burden in children?

L. reuteri reduces the duration of rotaviral diarrhea in infants

Shornikova et al. J Pediatr Gastroenterol Nutr 1997;24(4):399-404.

Intestinal Bacteria in a Neonatal Mouse Model

(Geoff Preidis)

FISH probe specific to L. reuteri 16S rRNA / TRITC probe, 200x. Strain DSM 17938 shown.

Experimental Design: Testing *L. reuteri* with mouse rotavirus

L. reuteri does not enhance mucosal IgA in uninfected mice

Total Non-Specific IgA

L. reuteri enhances the earliest RV-specific mucosal antibody response

Rotavirus-Specific Antibody

Could *L. reuteri* enhance virusspecific antibody production?

 Virus-specific antibody clears rotavirus and protects humans and mice from subsequent infection

 Some probiotics increase fecal IgA in children

Franco et al., Vaccine 2006;24(15):2718-31. Fukushima et al., Int J Food Microbiol 1998;42(1-2):39-44.

Using BrdU to measure epithelial turnover

Probiotics increase intestinal epithelial cell proliferation

No Treatment

Strain A

Strain B

Strain-specific differences in IEC migration are seen at 2 DPI

No Treatment

Strain A

Strain B

(GA Preidis and J Versalovic. Gastroenterology 2009;136:2015-31)

Intestinal Bacterial and Immunological Balance

H. hepaticus **PATHOGEN**

Salmonella sp.

L. reuteri

BENEFICIAL

L. paracasei

Blumberg RS and Strober W. 2001. JAMA 285: 645

Future Directions

(GA Preidis and J Versalovic. Gastroenterology 2009;136:2015-31)

Acknowledgments

Entire Versalovic Lab

With special thanks to: Michael Hsieh Delphine Saulnier Jeremy (Ryan) Pena Chandra Iyer Jennifer Spinler Yea Ping Lin Sara Jones Geoff Preidis Sue Venable Carissa Thomas Angela Major

Baylor – Texas Children's

Milton J. Finegold George D. Ferry and Mark Gilger Carolyn Thibodeaux Daniel Lacorazza Doug Burrin and Steven Kim Sarah Blutt and Margaret Conner

Funding Agencies and Center Resources

National Institutes of Health (NIDDK, NCCAM and NIDCR), Crohn's and Colitis Foundation of America (CCFA), Texas Medical Center Digestive Diseases Center (NIH NIDDK), U.S. Department of Defense (DARPA, ONR).

MIT – Division of Comparative Medicine

James G. Fox and Susan Erdman Zhongming Ge and Arlin Rogers Jacqueline Fremont and Suresh <u>Michigan St University</u>

Robert A. Britton Kristi Whitehead and Laura Schaefer

Beckman Research Institute, City of Hope

Markus Kalkum and Teresa Hong

Biogaia AB (Stockholm, Sweden)

Eamonn Connolly Noris Carbajal and Uma Shah

Swedish Agriculural Univ. (Uppsala, Sweden)

Hans Jonsson and Stefan Roos

WE ARE NOT THE SAME.....

CAZLO GUARDI?